Jeff Masters on Alaska Weather, Sean, etc.

Dr. Jeff Masters’ WunderBlog

Alaska blizzard pushes 8-foot storm surge into Nome; Sean heads towards Bermuda
Posted by: JeffMasters, 2:47 PM GMT on November 10, 2011 +3
The most powerful storm to affect the Bering Sea coast of Alaska since 1974 is slowly winding down today, after pounding Alaska’s west coast and Eastern Siberia with hurricane-force winds, a destructive storm surge more than 8 feet high, waves up to 40 feet high, and heavy snow. The highest wind gust recorded during the storm, 89 mph, was at Wales at the western tip of the Seward Peninsula, which forms the U.S. side of the Bering Strait. Hurricane force gusts were observed at seven locations in Alaska:Cape Lisburne… 81 mph at 7 am Wed
Gambell… … … 74 mph at 6 pm Tue
Kotzebue… … ..74 mph at 6 am Wed
Point Hope… … 78 mph at 5 am Wed
Savoonga… … ..76 mph at 7 pm Tue
Tin City… … ..85 mph at 12 am Wed
Wales… … … ..89 mph at 1:42 am Wed

A storm surge of 8.6 feet hit Nome, Alaska near 9 pm EST last night, pushed inland by sustained winds that reached 45 mph, gusting to 61 mph. Large waves on top of the surge encrusted with sea ice battered the coast, causing extensive damage and coastal flooding. Significant wave heights at the Bering Sea buoy north of the Aleutian Islands reached 40 feet during the peak of the storm. The last time Nome, Alaska saw a storm this strong was November 11 – 12 1974,when the city experienced sustained winds of 46 mph with gusts to 69 mph, a pressure that bottomed out at 969 mb, and a storm surge of 13 feet. The center of yesterday’s storm moved ashore over eastern Siberia near 12 UTC with a central pressure of 945 mb. The storm’s central pressure had risen to 958 mb this morning, with the center of the storm now located north of Siberia over the Arctic.


Figure 1. Observed storm surge at Nome, Alaska (green line). MLLW = Mean Lower Low Water, the water level at the lowest tide of the month. The top storm surge of 8.6 feet occurred near 02 GMT this morning (9 pm EST November 9, 2011.) Image credit: NOAA Tides and Currents.

My related blog posts:
Climate change likely to worsen erosion along the Alaska coast
The future of intense winters storms

Tropical Storm Sean
Tropical Storm Sean is on the move towards the northeast, towards a brush with Bermuda. Infrared satellite loopsreveal that Sean has not changed much in organization this morning. The storm has a respectable amount of heavy thunderstorm activity near its center that is relatively shallow, and Sean has at times been able to close off an eyewall, and has a ragged-looking eye. Bermuda radar shows one strong rain band from Sean has affected the island, with the bulk of Sean’s heavy thunderstorms well to the island’s southwest. Sustained winds at the Bermuda airport have been under 30 mph this morning, and Bermuda picked up 0.08″ of rain yesterday, and 0.24″ as of 9 am EST today. Sustained winds at buoy 41048, about 300 miles west of Bermuda were 40 mph at 7:50 am EST. Strong upper-level winds out of the west are creating about 20 knots of wind shear over Sean, which is low enough to allow some slow development. Ocean temperatures have fallen to 25°C (77°F), which just below the 26°C threshold typically needed for a tropical storm to maintain its strength.


Figure 2. Morning satellite image of Tropical Storm Sean.

Forecast for Sean
The latest SHIPS model forecast predicts wind shear will remain about where it is now through Friday morning. However, ocean temperatures will gradually cool to 24°C during this time, and it is questionable whether Sean will have a favorable enough environment to strengthen into a hurricane. The computer models show little development of Sean, with none of our reliable models predicting it will become a hurricane. Bermuda is the only land area that need concern itself with Sean, as the storm is now caught in a trough of low pressure that will accelerate the storm to the northeast. The center of Sean could pass close enough to Bermuda to bring the island heavy rain squalls and sustained winds of 40 – 45 mph on Friday. NHC is giving a 52% chance that Bermuda will receive tropical storm-force winds of 39 mph. Wind shear will rise to 30 – 50 knots on Friday, which should be able to rip the storm apart by Saturday.

Jeff Masters

Jeff Masters on Rolf, Sean, Alaskaa System, & Oklahoma Tornado…. Oh, My

Sean, rare Mediterranean hybrid, and AK superstorm forms; quakes and tornadoes in OK
Posted by: JeffMasters, 3:52 PM GMT on November 08, 2011 +16
Subtropical Storm Sean formed this morning between Bermuda and the Bahamas. Sean’s formation brings this year’s tally of named storms to eighteen, tying 2011 with 1969 as the 6th busiest Atlantic hurricane season since record keeping began in 1851. Only 2005, 1933, 1995, 1887, and 2010 have had more named storms. However, 2011 has had an unusually low percentage of its named storms reach hurricane strength. We’ve had an average number of hurricanes–six–meaning that only 33% of this year’s named storms have made it to hurricane strength. Normally, 55 – 60% of all named storms intensify to hurricane strength in the Atlantic. There have been three major hurricanes in 2011, which is one above average, and the total Accumulated Cyclone Energy (ACE)–a measure of the destructive potential of this season’s storms–has been about 20% above average. The rare combination of near-record ocean temperatures but unusually dry, stable air over the Atlantic is no doubt at least partially responsible for the unusually high count of named storms, but near-average number of hurricanes and ACE.


Figure 1. The subtropical disturbance that became Subtropical Storm Sean, as seen at 1 pm EST November 7, 2011. Image credit: NASA.

Infrared satellite loops reveal that Sean has developed a respectable amount of heavy thunderstorm activity near its center that is increasing in intensity and areal coverage. While the low-level circulation center is exposed to view, a band of thunderstorms is trying to wrap around and close of the center. If this occurs, more substantial strengthening can occur, since the center will be walled off from the dry air that is currently interfering with development. Bermuda radar shows weak rain bands from Sean rippling across the island, with the strongest rain showers well to the island’s southwest. Sustained winds at the Bermuda airport have been under 30 mph this morning. Sustained winds near tropical storm force were occurring this morning at buoy 41048, about 300 miles west of Bermuda. Winds at the buoy were 38 mph, gusting to 47 mph at 6:50 am EST. Strong upper-level winds out of the west are creating about 20 knots of wind shear over Sean, which is low enough to allow some slow development. Sean is a relatively shallow storm, and the tops of its thunderstorms extend up only to about the 300 mb level. Normally, a tropical storm extends up to about 200 mb. The shallow nature of Sean’s thunderstorms mean that the storm is less vulnerable to wind shear than normal, since the storm is not feeling the strongest winds aloft. Ocean temperatures are near 26.5°C (80°F), which is right at the boundary of being warm enough to support tropical storm formation.

Forecast for Sean
Sean will drift slowly west or northwest today and Wednesday. The latest SHIPS model forecast predicts wind shear will remain about where it is now through Thursday morning, which should allow Sean to slowly intensify to a 50 mph storm. If Sean can make the transition to a fully tropical storm, more significant intensification can occur. The computer models show little or no development of Sean, with none of our reliable models predicting it will become a hurricane. Bermuda is the only land area that need concern itself with Sean, as a trough of low pressure is expected to absorb the storm on Thursday and lift it quickly to the north or northeast. The center of Sean could pass close enough to Bermuda to bring the island heavy rain squalls and sustained winds of 40 – 45 mph on Thursday and Friday. NHC is giving a 28% chance that Bermuda will receive tropical storm-force winds of 39 mph. High wind shear should destroy Sean on Friday.


Figure 2. MODIS image of the hybrid low named “Rolf” in the Mediterranean Sea at 10:30 UTC November 8, 2011. Image credit: NASA.

Unusual tropical storm-like low forms off coast of France
An unusual hybrid low pressure system has formed in the Mediterranean Sea, about 100 miles south of the coast of France. The low began as an extratropical storm named “Rolf”, but has stalled out over the relatively warm waters of the Mediterranean over the past two days, and has acquired tropical characteristics. Heavy thunderstorms have built over the northeast portion of the low, and the storm has a symmetric spiral shape with a cloud-free center, like a tropical storm. The Navy is calling this system Invest 99L. The National Hurricane Center is not responsible for the Mediterranean Sea, so they are not issuing any products for 99L. NOAA’s Satellite and Information Service (NESDIS) is giving 99L a tropical classification based on its satellite presentation, with winds in the 40 – 45 mph range. French radarshows heavy rains from 99L are beginning to affect Southeast France and the island of Corsica. The Lion Buoy, located about 100 miles to the west of the center of 99L, recorded sustained winds of tropical storm force, 40 mph, at 00 UTC yesterday. Water temperatures at the buoy were 17°C (63°F), far below the 26°C threshold usually needed to sustain a tropical storm. The coldest waters I’ve seen a tropical storm form in were 22°C during Hurricane Epsilon of 2005. I doubt that NHC would name this system if they did have responsibility for the Mediterranean, due to the cold water temperatures.

“Rolf” is expected to move slowly northwards into the coast of South France by Wednesday night. Meteo France is predicting heavy rains of 30 – 40 mm/hr (1.2 – 1.6″/hr) will affect the coast Tuesday night through Wednesday, with sustained winds of 50 mph, gusting to 75 mph.


Figure 3. Hybrid subtropical storm of October 8, 1996, off the coast of Italy. According to Reale and Atlas (2001), the storm had characteristics similar to a hurricane, but formed over water of 21.5°C. “The maximum damage due to wind occurred over the Aeolian Islands, at 38.5°N, 15°E, to the northeast of Sicily: assistance for disaster relief was required. Unfortunately, no weather station data were available, but the media reported sheds, roofs and harbor devices destroyed, and houses and electric lines damaged, due to “extremely strong westerly wind.” The perfect agreement between the observations at Ustica, the storm scale, the eye-like feature position and the damages over the Aeolian Island reasonably suggest that the hurricane-level intensity of 32 m/s (72 mph) was reached over the Aeolian Islands.” A similar hybrid low affected Algeria on 9 – 10 November 2001. This storm produced upwards of 270 mm (10.6″) of rain, winds of 33 m/s (74 mph), and killed 737 people near Algeirs, mostly from flooding and mud slides. Image credit:Dundee satellite receiving station.

According to research published by Gaertner et al. (2007), an increase in ocean temperatures of 3°C in the Mediterranean by the end of the century could lead to hurricanes forming there. Miguel Angel Gaertner of the University of Castilla-La Mancha in Toledo, Spain, ran 9 different climate models with resolutions of about 50 km and found that some (but not all) of the models simulated hurricanes in the Mediterranean in September by the end of the century, when ocean temperature could reach 30°C.

Though the Mediterranean may start seeing hurricanes by the end of the century, these storms should be rare and relatively short-lived for three reasons:

1) The Mediterranean is quite far north and is subject to strong wind shear from jet stream activity.

2) The waters are shallow, and have relatively low heat content. There is no deep warm water current like the Gulf Stream.

3) The Mediterranean has a lot of large islands and peninsulas poking into it, increasing the chances that a tropical storm would weaken when it encountered land.

References
Meteo France has an interesting animation of the predicted winds and temperatures over the next few days.

Gaertner, M. A., D. Jacob, V. Gil, M. Dominguez, E. Padorno, E. Sanchez, and M. Castro (2007), Tropical cyclones over the Mediterranean Sea in climate change simulations,, Geophys. Res. Lett., 34, L14711, doi:10.1029/2007GL029977.

Reale, O., and R. Atlas. 2001: Tropical Cyclone-Like Vortices in the Extratropics: Observational Evidence and Synoptic Analysis, Weather and Forecasting, 16, No. 1, pp. 7-34.


Figure 4. Radar reflectivity image from the Tipton, OK tornado of November 7, 2011, showing a classic hook echo.

Shaken and stirred: an earthquake and tornado for Oklahoma
It was a rare multi-natural hazard day for Oklahoma yesterday, as the state experienced both a tornado and an earthquake, six hours apart. The damaging magnitude 5.6 earthquake that shook the state Saturday night spawned amagnitude 4.7 aftershock at 8:46 pm CST yesterday, 44 miles east of Oklahoma City. And at 2:47 pm CST, a tornado touched down in Southwest Oklahoma near Tipton. The tornado destroyed an Oklahoma State University agricultural office, and damaged a hay barn at a dairy farm. No injuries were reported. The UK MailOnline has an interesting article showing the radar image from Saturday’s quake, which captured a massive groups of birds and insects that took flight after the ground shook.

This afternoon, NOAA’s Storm Prediction Center has placed Southeast Oklahoma, East Texas, Southeast Missouri, and most of Arkansas in its “Slight Risk” area for severe weather, thanks to a strong low pressure system moving across the Plains. During the late afternoon, severe thunderstorms with high winds and large hail and expected over the region, and we cannot rule out an isolated tornado.

Bering Sea superstorm targets Alaska
A massive blizzard the National Weather Service is calling one of the most severe Bering Sea storms on record is gathering strength today to the west of Alaska. The storm is expected to “bomb” to a central pressure of 945 – 950 mb Tuesday night, and to 940 mb on Wednesday. These pressures, characteristic of a Category 3 hurricane, will be strong enough to generate sustained winds of Category 1 hurricane force over the waters to the west of Alaska, with winds of 50 – 70 mph expected along portions of the coast. Nome, Alaska is expecting a storm surge of 8 – 10 feet. Waves of 15 – 25 feet with ice on top will batter the shores, causing severe damage to the coast.

Jeff Masters