CERN & The Bump

ALL POINTS ALERT CERN LHC: New Physics Beyond The Higgs?

https://tatoott1009.com/

yellowstone idaho cern-SPACEWAR-LHC=HARRP= sandhook g 32

June 8, 2016 — https://tatoott1009.com/

Late last year, when most people were getting ready for the holidays, physicists at the Large Hadron Collider (LHC) machine at CERN, the European Organization for Nuclear Research, made a startling announcement: Their two massive detectors had identified a small bump in the data with an energy level of about 750 GeV.

This level is about six times larger than the energy associated with the Higgs particle. (To go from energy to mass divide the energy by the square of the speed of light.) For comparison, the mass of a proton, the particle that makes the nuclei of all atoms in nature, is about 1 GeV. The Higgs is heavy — and this new bump, if associated with a new particle, would be really heavy.

The high energy physics community answered with verve. In a few months, hundreds of papers have been published with hypothetical explanations for the bump.

Last month, physicists at CERN released a bit more information, slightly strengthening their claim for the reality of this new data point. Right now, the bump has a 1 in 20 chance of being just a spurious statistical fluctuation, something that happens from time to time, even if rare.

yellowstone idaho cern-SPACEWAR-LHC=HARRP= sandhook g 31

When do scientists declare that something is “real,” that is, that something belongs to the collection of other particles we have found so far that make up all the material diversity we see? It’s a tricky question. There is an agreed standard, that the signal for a new particle must be certain to a level of 1/3,500,000. That’s very far from 1/20, and that’s why physicists are not announcing a new discovery just yet. However, if all goes well with the LHC operations, by late fall we should have enough data to decide whether the bump is real.

yellowstone idaho cern-SPACEWAR-LHC=HARRP= sandhook f 66

Then comes the fun part: If it’s real, what is it?

The editors of the prestigious physics journal Physical Review Letters published an editorial explaining how they selected four representative papers from the deluge they received trying to make sense of the bump.

The exciting part of this is that the bump would be new, surprising physics, beyond expectations. There’s nothing more interesting for a scientist than to have the unexpected show up, as if nature is trying to nudge us to look in a different direction.

The four papers propose different explanations for the data, assuming, of course, it doesn’t go away. Three of them suggest the bump does indeed signal the existence of a new particle. A fourth suggest that the event signals the fragmentation of a much heavier particle:

One paper suggests the existence of a new force of nature, so, a fifth force, that acts like the strong force that glues atomic nuclei together. The strong force also glues quarks into protons and quarks and antiquarks into pions. (I know, it starts getting weird quickly. Antiquarks? They are mostly like quarks but with opposite electric charge.) The idea is that these two quarklike particles are glued into something like a new pion (which looks a lot like a very heavy Higgs) that eventually decays, releasing the two photons that were detected.
A new Higgs-like particle that couples to new kinds of particles.
A particle predicted from a thus far elusive symmetry of nature known as supersymmetry. If real, supersymmetry demands that every particle has a partner, like a mirror image with some properties reversed. The simplest version of supersymmetry is practically ruled out by data, but more convoluted extensions are still game. Expectations are high that this could be the case, as supersymmetry has been around for more than 45 years and needs some experimental support to remain credible as a physical theory of nature — and not just a nice idea.
Finally, the fourth paper suggests the bump is not the signature of a new particle at 750 GeV, but the remains of a much heavier particle that breaks down into a cascade of fragments. The two photons are the detectable signature of one fragment, like catching a movie in the middle.

It will be interesting to see how this plot unfolds as new data are gathered and released to the community. The exciting part is that we have this amazing tool that is opening windows into completely new territory. The Higgs was just the beginning, it seems.

Why should one care? There are different reasons, from the practical to the sublime. To engineer a machine like the LHC, compile and analyze the mountains of data it generates, and then interpret the whole thing takes not just pushing technology to the limit and beyond, but also the development of community rules of engagement in teams of thousands of physicists and engineers. Who calls the shots? How are decisions made? The World Wide Web was created at CERN to facilitate the exchange of data between scientists, a pretty critical spinoff from a particle physics experiment. Data storage and management technologies are being invented all the time at such facilities, as are detector and radiation technologies.

yellowstone idaho cern-SPACEWAR-LHC=HARRP= sandhook f 62

At the more abstract, a new physics event at energies six times higher than where the Higgs was found would mean that we are edging a bit closer to the Big Bang, the event that marks the origin of the universe. There is a huge gap in energy between the Higgs and the Big Bang, of course, but getting new data at higher energies can clarify how to move closer. This kind of fundamental physics has a very noble heritage, as it traces its origins to the beginnings of Western philosophy and even beyond — to questions related to our origins. If we picture creation as a puzzle, every new piece we discover helps us understand our origins a little better. The new bump may not give us a final answer (it’s not clear we can ever get there), but it’d certainly make the picture clearer.

yellowstone idaho cern-SPACEWAR-LHC=HARRP= sandhook f 67

As Tom Stoppard wrote in his play Arcadia, it is wanting to know that makes us matter. And fundamental physics is all about wanting to know.

Marcelo Gleiser is a theoretical physicist and cosmologist — and a professor of natural philosophy, physics and astronomy at Dartmouth College. He is the co-founder of 13.7, and an active promoter of science to the general public. His latest book is The Simple Beauty of the Unexpected: A Natural Philosopher’s Quest for Trout and the Meaning of Everything.

from:    https://tatoott1009.com/2016/06/08/all-points-alert-cern-lhc-new-physics-beyond-the-higgs/

Big Events Coming In September-Check it Out

As always, do your research!  But so many feel that September is going to be critical on all levels:

 

The Big List Of 33 Things That Are Going To Happen In September 2015

33 SignIs September 2015 going to be a month that changes history?  For months, there has been an unprecedented amount of buzz all over the Internet about what is going to happen in September.  And without a doubt, we are going to witness a convergence of events during that month that is quite remarkable.  What I have attempted to do in this article is to put together a list of things that we know will happen next month.  Some of the lists that I have seen contain things that cannot be proven or that are simply inaccurate.  And of course it is very likely that some things will happen in September that we cannot anticipate right now.  I am just providing the information that I have at this time, and it is up to you and your family to prepare for what you believe will happen.  The following is my big list of 33 things that are going to happen in September 2015…

September 1 – This marks the beginning of FEMA’s annual “National Preparedness Month

September 7 – Labor Day

September 11 – The 14th anniversary (7+7) of 9/11

September 11 – The last day of trading on Wall Street before the end of the Shemitah year

September 12 – Madonna’s Rebel Heart Tour opens in the United States.  The first stop is in Washington D.C. and according to Holly Deyo the “opening theme is Desecration of The Bride and Arrival of Fallen Angels”

September 12 and September 13 – Rabbi Chaim Kanievsky, a leading authority in Ultra-Orthodox Judaism, has indicated that the Messiah that the Jewish people are expecting could come at this time

September 13 – The last day of the Shemitah year.  During the last two Shemitah cycles, we witnessed record-breaking stock market crashes on the very last day of the Shemitah year (Elul 29 on the Biblical calendar).  For example, if you go back to September 17th, 2001 (which was Elul 29 on the Biblical calendar), we witnessed the greatest one day stock market crash in all of U.S. history up until that time.  The Dow plunged 684 points, and it was a record that held for exactly seven years until the end of the next Shemitah cycle.  On September 29th, 2008 (which was also Elul 29 on the Biblical calendar), the Dow plummeted 777 points, which still today remains the greatest one day stock market crash of all time in the United States.  Now we are in another Shemitah year.  It began in the fall of 2014, and it ends on September 13th, 2015.

September 13Partial solar eclipse

September 14 – Rosh Hashanah

September 14 – The first day of trading on Wall Street after the end of the Shemitah year

September 15 – The 70th session of the UN General Assembly begins on this date.  It has been widely reported that France plans to introduce a resolution which will give formal UN Security Council recognition to a Palestinian state shortly after the new session begins.  Up until now, the U.S. has always been the one blocking such a resolution, but Barack Obama has already indicated that things may be different this time around.  It would be extremely difficult to overstate the significance of this.

September 15 – The Jade Helm military exercises are scheduled to end

September 17 – If there is going to be a rate hike in September, this is probably when the Federal Reserve will do it

September 17 – This is the deadline for Congress to vote on Obama’s deal with Iran

September 17Constitution Day – most Americans do not even know that this holiday exists

September 18The Days of Awe conference in Sandpoint, Idaho – Christians from all over the nation will be gathering to call out to God in prayer and to repent for the sins of our country

September 20 to September 26 – The “World Week For Peace in Palestine Israel” sponsored by the World Council of Churches

September 21 – This is when the Hajj (pilgrimage to Mecca) is projected to begin

September 21The UN International Day Of Peace

September 22 – In Islam, “the Day of Arafat” falls on this day

September 23 – The last day of the summer

September 23 – Yom Kippur

September 23 – The Muslim holiday of Eid al-Adha, also known as “the Feast of the Sacrifice”, begins

September 23 – Pope Francis arrives at the White House to meet with Barack Obama

September 23 – The 266th Pope will be meeting with the president of the United States on the 266th day of the year.  Some have suggested that “something is being birthed” on that day since 266 days is the average length of the human gestation period.

September 24 – The Pope addresses a joint session of the U.S. Congress

September 25 – On May 14th, 2014 French Foreign Minister Laurent Fabius famously proclaimed that we had only 500 days to avoid “climate chaos”. His time frame of 500 days ends on September 25th.

September 25 – The Pope will hold mass in Madison Square Garden in New York City

September 25 to September 27 – The United Nations launches a brand new “universal agenda” for humanity known as “the 2030 Agenda

September 25 – The Pope appears at the UN to deliver an address to kick off the conference at which the 2030 Agenda will be unveiled

September 26 and 27 – The Pope will be traveling to Philadelphia for the “2015 World Meeting of Families

September 28 – The first day of the Feast of Tabernacles

September 28 – This is the date for the last of the four blood moons that fall on Biblical festival dates during 2014 and 2015.  This blood moon will be a “supermoon” and it will be clearly visible from the city of Jerusalem.

Due to the ending of the Shemitah year and numerous other factors, there is rampant speculation that a stock market crash is going to happen in the United States during the month of September.  Previously, I have expressed my view that a major global financial crisis is imminent, but my warning covers all of the remaining months of 2015.  Since I cannot prove that a stock market crash will happen next month, I have left it off the list.  But without a doubt, we are entering the danger zone.

There is also lots of speculation about unusual activity at the Large Hadron Collider during the month of September.  In my research, I have not yet come across anything that confirms that.  If you have solid information concerning this, please send it to me.  But certainly, what they are doing with the Large Hadron Collider concerns me greatly.  This is something that I covered in a previous article entitled “Will The Large Hadron Collider Open Up A Portal To Another Dimension?

In addition, I am also aware that there is a tremendous amount of speculation about an asteroid or a meteor that may or may not be heading toward our planet next month.  At this time, I have no way of proving this is true, and I have no way of disproving it is true either.  I have not come across anything that I can independently verify that indicates that this will or will not happen.  In law school I was trained to stick to the facts, and I don’t have any facts.  If you do have some solid and verifiable information, please share it with me.

Finally, I would like to acknowledge that there is plenty of speculation about certain natural disasters that may happen in September.  They may indeed happen, but I cannot prove anything of that nature right now so I have left those natural disasters off the list.

Needless to say, next month promises to be absolutely crazy, and our time for preparing is running out.

Disaster can strike very suddenly, and when it does, average citizens can be caught totally unprepared.  This is a point that Carl Gallups, the author of a new book entitled “Be Thou Prepared: Equipping the Church for Persecution and Times of Trouble“, recently made during an interview with WND

Gallups identifies specific incidents when civil society collapsed, most notably in New Orleans immediately following Hurricane Katrina.

You ended up with the worst of both worlds,” Gallups observed. “You had widespread criminality, anarchy and disorder, and somehow, at the same time, you had government officials going around enforcing wildly tyrannical guidelines and even confiscating firearms.”

As a result, Americans may be forced to rely on themselves for protection, meaning Christians have to begin planning now.

Even if it doesn’t happen next month, life in America is about to change dramatically.

The infrastructure and government services that we have all come to take for granted may not be there in the future.

It is imperative that we all start to learn how to become more independent of the system, because the system is going to start failing in thousands of different ways.

So what do you think?

from:    http://endoftheamericandream.com/archives/the-big-list-of-33-things-that-are-going-to-happen-in-september-2015

New Particles Discovered at LHC

Never-Before-Seen Particles Discovered at Swiss Collider

Implications of Finding The Higgs

The Elusive Particle: 5 Implications of Finding Higgs

Clara Moskowitz, LiveScience Senior Writer
Date: 04 July 2012
LHC's CMS detector observed this collision with signatures that could be due to the Higgs boson.

Real CMS proton-proton collisions events at the Large Hadron Collider in which 4 high energy electrons (red towers) are observed. The event shows characteristics expected from the decay of a Higgs boson but is also consistent with background Standard Model physics processes.
CREDIT: CERN/CMS/Taylor, L; McCauley, T

Physicists at the world’s largest atom smasher announced today (July 4) that they are more than 99 percent sure they’ve found a new, and heavy, boson particle, that may be the Higgs boson.

Two experiments at the Large Hadron Collider (LHC) in Geneva, Switzerland, show this new particle has a mass of about 125 GeV, with 1 gigaelectron volt about the mass of a proton. The LHC is the most powerful machine on Earth, capable of producing huge explosions of energy that generate new and exotic particles inside the 17-mile (27 kilometer) loop underneath Switzerland and France.

If the discovery can be confirmed as the Higgs boson, it will have wide wide-reaching implications. Here are five of the biggest.

1. The origin of mass

The Higgs boson has long been thought the key to resolving the mystery of the origin of mass. The Higgs boson is associated with a field, called the Higgs field, theorized to pervade the universe. As other particles travel though this field, they acquire mass much as swimmers moving through a pool get wet, the thinking goes.

“The Higgs mechanism is the thing that allows us to understand how the particles acquire mass,” said Joao Guimaraes da Costa, a physicist at Harvard University who is the Standard Model Convener at the LHC’s ATLAS experiment. “If there was no such mechanism, then everything would be massless.”

If physicists confirm that the detection of the new elementary particle is indeed the Higgs boson, and not an imposter, it would also confirm that the Higgs mechanism for particles to acquire mass is correct. “This discovery bears on the knowledge of how mass comes about at the quantum level, and is the reason we built the LHC. It is an unparalleled achievement,” Caltech professor of physics Maria Spiropulu, co-leader of the CMS experiment, said in a statement.

And, it may offer clues to the next mystery down the line, which is why individual particles have the masses that they do. “That could be part of a much larger theory,” said Harvard University particle physicist Lisa Randall.”Knowing what the Higgs boson is, is the first step of knowing a little more about what that theory could be. It’s connected.”

2. The Standard Model

The Standard Model is the reigning theory of particle physics that describes the universe’s very small constituents. Every particle predicted by the Standard Model has been discovered — except one: the Higgs boson.

“It’s the missing piece in the Standard Model,” said Jonas Strandberg, a researcher at CERN working on the ATLAS experiment. “So it would definitely be a confirmation that the theories we have now are right.” If the newly detected particle turns out not to be the Higgs boson, it would mean physicists made some assumptions that are wrong, and they’d have to go back to the drawing board.

While the discovery of the Higgs boson would complete the Standard Model, and fulfill all its current predictions, the Standard Model itself isn’t thought to be complete. It doesn’t encompass gravity (so don’t count on catching that fly ball), for example, and leaves out the dark matter thought to make up 98 percent of all matter in the universe.

“The Standard Model describes what we have measured, but we know it doesn’t have gravity in it, it doesn’t have dark matter,” said CERN physicist William Murray, the senior Higgs convener at ATLAS and a physicist at the U.K.’s Science and Technology Facilities Council. “So we’re hoping to extend it to include more.”

3. The Electroweak Force

A confirmation of the existence of the Higgs boson would also help explain how two of the fundamental forces of the universe — the electromagnetic force that governs interactions between charged particles, and the weak force that’s responsible for radioactive decay — can be unified.

Every force in nature is associated with a particle. The particle tied to electromagnetism is the photon, a tiny, massless particle. The weak force is associated with particles called the W and Z bosons, which are very massive.

The Higgs mechanism is thought to be responsible for this.

“If you introduce the Higgs field, the W and Z bosons mix with the field, and through this mixing they acquire mass,” Strandberg said. “This explains why the W and Z bosons have mass, and also unifies the electromagnetic and weak forces into the electroweak force.”

Though other evidence has helped buffer the union of these two forces, the discovery of the Higgs would seal the deal. “That’s already pretty solid,” Murray said. “What we’re trying to do now is find really the crowning proof.”

4. Supersymmetry

Another theory that would be affected by the discovery of the Higgs is called supersymmetry. This idea posits that every known particle has a “superpartner” particle with slightly different characteristics.

Supersymmetry is attractive because it could help unify some of the other forces of nature, and even offers a candidate for the particle that makes up dark matter. The newly detected particle is in the low-mass range, at 125.3 or so GeV, something that lends credence to supersymmetry.

“If the Higgs boson is found at a low mass, which is the only window still open, this would make supersymmetry a viable theory,” Strandberg said.”We’d still have to prove supersymmetry exists.”

5. Validation of LHC

The Large Hadron Collider is the world’s largest particle accelerator. It was built for around $10 billion by the European Organization for Nuclear Research (CERN) to probe higher energies than had ever been reached on Earth. Finding the Higgs boson was touted as one of the machine’s biggest goals.

Finding the Higgs would offer major validation for the LHC and for the scientists who’ve worked on the search for many years.

“This discovery bears on the knowledge of how mass comes about at the quantum level, and is the reason we built the LHC. It is an unparalleled achievement,” Spiropulu said in a statement. “More than a generation of scientists has been waiting for this very moment and particle physicists, engineers, and technicians in universities and laboratories around the globe have been working for many decades to arrive at this crucial fork. This is the pivotal moment for us to pause and reflect on the gravity of the discovery, as well as a moment of tremendous intensity to continue the data collection and analyses.”

The discovery of the Higgs would also have major implications for scientist Peter Higgs and his colleagues who first proposed the Higgs mechanism in 1964.

And a Nobel Prize may be another result: “If it is found there are several people who are going to get a Nobel prize,” said Vivek Sharma, a physicist at the University of California, San Diego, and the leader of the Higgs search at LHC’s CMS experiment.

from:    http://www.livescience.com/21381-higgs-boson-particle-implications.html

Finding the Higgs Particle

Long-Sought Higgs Particle Cornered, Scientists Say

Clara Moskowitz, LiveScience Senior Writer
Date: 13 December 2011 Time: 08:52 AM ET
Particle collision tracks at LHC
A typical candidate event at the Large Hadron Collider (LHC), including two high-energy photons whose energy (depicted by red towers) is measured in the CMS electromagnetic calorimeter. The yellow lines are the measured tracks of other particles produced in the collision. The pale blue volume shows the CMS crystal calorimeter barrel.
CREDIT: CERN/COMS

Physicists are closer than ever to hunting down the elusive Higgs boson particle, the missing piece of the governing theory of the universe’s tiniest building blocks.

Scientists at the world’s largest particle accelerator, the Large Hadron Collider at the European Organization for Nuclear Research (CERN) in Geneva, Switzerland, announced today (Dec. 13) that they’d narrowed down the list of possible hiding spots for the Higgs, (sometimes called the God particle) and even see some indications that they’re hot on its trail.

“I think we are getting very close,” said Vivek Sharma, a physicist at the University of California, San Diego, and the leader of the Higgs search at LHC’s CMS experiment. “We may be getting the first tantalizing hints, but it’s a whiff, it’s a smell, it’s not quite the whole thing.”

Today’s announcement was highly anticipated by both the physics community and the public, with speculation running rampant in the days leading up to it that the elusive particle may have finally been found. Though the news is not the final answer some were hoping for, the progress is a significant, exciting step, physicists say. [Top 5 Implications of Finding the Higgs Boson]

“It’s something really extraordinary and I think we can be all proud of this,” said CERN physicist Fabiola Gianotti, spokesperson for the LHC’s ATLAS experiment, during a public seminar announcing the results today.

Experts outside the LHC collaborations agreed.

“These are really tough experiments, and it’s just really impressive what they’re doing,” Harvard University theoretical physicist Lisa Randall told LiveScience.

Physicists at the CERN laboratory in Geneva, Switzerland view a presentation of the data collected so far in the search for the Higgs boson particle at the Large Hadron Collider's ATLAS experiment.
Physicists at the CERN laboratory in Geneva, Switzerland view a presentation of thedata collected so far in the search for the Higgs boson particle at the Large Hadron Collider’s ATLAS experiment.
CREDIT: CERN

Origin of mass

The Higgs boson is thought to be tied to a field (the Higgs field) that is responsible for giving all other particles their mass. Ironically, physicists don’t have a specific prediction for the mass of the Higgs boson itself, so they must search a wide range of possible masses for signs of the particle.

Based on data collected at LHC’s CMS and ATLAS experiments, researchers said they are now able to narrow down the Higgs’ mass to a small range, and exclude a wide swath of possibilities.

“With the data from this year we’ve ruled out a lot of masses, and now we’re just left with this tiny window, in this region that is probably the most interesting,” said Jonas Strandberg, a researcher at CERN working on the ATLAS experiment.

The researchers have now cornered the Higgs mass in the range between 115 and 130 gigaelectronvolts (GeV).For comparison, a proton weighs 1 GeV. Outside that range, the scientists are more than 95 percent confident that the Higgs cannot exist.

Within that range, the ATLAS findings show some indications of a possible signal from the Higgs boson around 125 GeV, though the data are not strong enough for scientists to make a claim with the level of confidence they require for a true discovery.

The CMS experiment also showed preliminary indications of a signal around that spot.

This plot shows the data collected so far by the Large Hadron Collider's ATLAS experiment in the search for the Higgs boson particle.
This plot shows the data collected so far by the Large Hadron Collider’s ATLAS experiment in the search for the Higgs boson particle.
CREDIT: CERN/ATLAS

“The excess is most compatible with a Standard Model Higgs in the vicinity of 124 GeV and below, but the statistical significance is not large enough to say anything conclusive,” CMS experiment spokesperson Guido Tonelli said in a statement. “As of today what we see is consistent either with a background fluctuation or with the presence of the boson. Refined analyses and additional data delivered in 2012 by this magnificent machine will definitely give an answer.”

Proceed with caution

Ultimately, scientists said they were excited by the LHC’s findings so far, but that it’s too soon to celebrate.

“Please be prudent,” said CERN director general Rolf-Dieter Heuer. “We have not found it yet, we have not excluded it yet. Stay tuned.”

The fact that the independent studies conducted by ATLAS and CMS appear to be pointing in the same direction is particularly promising, experts said.

“Based on the predicted size of the signal, the experiments may have their first glimpse of a positive signal,” University of Chicago physicist Jim Pilcher wrote in an email to LiveScience. “It is especially important to compare the results of two independent experiments to help reduce statistical fluctuations and experimental biases.”

But it shouldn’t be much longer before scientists can be sure if the Higgs exists, and if so, how much mass it has.

“We know we must be getting close,” Strandberg told LiveScience. “All we need is a little bit more data. I think the data we take in 2012 should be able to really give a definitive answer if the Higgs boson exists.”

Underground explosions

The Large Hadron Collider is a 17-mile (27-kilometer) loop buried underneath France and Switzerland, run by CERN, based in Geneva.

Inside this loop, protons traveling near the speed of light collide head-on, and release huge amounts of energy in powerful explosions.

This energy then coalesces into new particles, some of which are exotic, hard-to-find species like the Higgs. The Higgs quickly decays into other particle products, which are then sensed by the detectors inside ATLAS and CMS. [6 Exotic Particles Explained]

The new results are based on data accumulated over 500 trillion proton-proton collisions inside the LHC.

Big payoff

The Higgs boson and its related Higgs field were predicted in 1964 by physicist Peter Higgs and his colleagues. Though the Higgs mechanism is the best explanation for why particles have mass, it can’t be trusted until its major prediction — the Higgs boson — is found. [Infographic: The Higgs Boson]

“It would be a major discovery, absolutely,” said Randall, who is the author of a recent book covering the Higgs and other particle mysteries called “Knocking on Heaven’s Door: How Physics and Scientific Thinking Illuminate the Universe and the Modern World” (Ecco, 2011). “We’ve known about the Higgs mechanism for years, but we don’t know if it’s right.”

The discovery of the Higgs would offer final credence to the idea and its originators.

“If it is found there are several people who are going to get a Nobel prize,” said Vivek Sharma, a physicist at the University of California, San Diego, and the leader of the Higgs search at LHC’s CMS experiment.

from:  http://www.livescience.com/17435-long-sought-god-particle-cornered-scientists.html 

Latest on Higgs Boson at the LHC

Possible Hints of Higgs Boson Remain in Latest Analyses, Physicists Say

ScienceDaily (Dec. 13, 2011) — Two experiments at the Large Hadron Collider have nearly eliminated the space in which the Higgs boson could dwell, scientists announced in a seminar held at CERN Dec. 13. However, the ATLAS and CMS experiments see modest excesses in their data that could soon uncover the famous missing piece of the physics puzzle.

Simulated production of a Higgs event in ATLAS. This track is an example of simulated data modeled for the ATLAS detector on the Large Hadron Collider at CERN. (Credit: Image courtesy 

The experiments revealed the latest results as part of their regular report to the CERN Council, which provides oversight for the laboratory near Geneva, Switzerland.

Theorists have predicted that some subatomic particles gain mass by interacting with other particles called Higgs bosons. The Higgs boson is the only undiscovered part of the Standard Model of physics, which describes the basic building blocks of matter and their interactions.

The experiments’ main conclusion is that the Standard Model Higgs boson, if it exists, is most likely to have a mass constrained to the range 116-130 GeV by the ATLAS experiment, and 115-127 GeV by CMS. Tantalising hints have been seen by both experiments in this mass region, but these are not yet strong enough to claim a discovery.

Higgs bosons, if they exist, are short-lived and can decay in many different ways. Just as a vending machine might return the same amount of change using different combinations of coins, the Higgs can decay into different combinations of particles. Discovery relies on observing statistically significant excesses of the particles into which they decay rather than observing the Higgs itself. Both ATLAS and CMS have analysed several decay channels, and the experiments see small excesses in the low mass region that has not yet been excluded.

Taken individually, none of these excesses is any more statistically significant than rolling a die and coming up with two sixes in a row. What is interesting is that there are multiple independent measurements pointing to the region of 124 to 126 GeV. It’s far too early to say whether ATLAS and CMS have discovered the Higgs boson, but these updated results are generating a lot of interest in the particle physics community.

Hundreds of scientists from U.S. universities and institutions are heavily involved in the search for the Higgs boson at LHC experiments, said CMS physicist Boaz Klima of the Department of Energy’s Fermi National Accelerator Laboratory near Chicago. “U.S. scientists are definitely in the thick of things in all aspects and at all levels,” he said.

More than 1,600 scientists, students, engineers and technicians from more than 90 U.S. universities and five U.S. national laboratories take part in the CMS and ATLAS experiments, the vast majority via an ultra-high broadband network that delivers LHC data to researchers at universities and national laboratories across the nation. The Department of Energy’s Office of Science and the National Science Foundation provide support for U.S. participation in these experiments. Fermi National Accelerator Laboratory is the host laboratory for the U.S. contingent on the CMS experiment, while Brookhaven National Laboratory hosts the U.S. ATLAS collaboration.

Over the coming months, both the CMS and ATLAS experiments will focus on refining their analyses in time for the winter particle physics conferences in March. The experiments will resume taking data in spring 2012.

“We’ve now analyzed all or most of the data taken in 2011 in some of the most important Higgs search analyses,” said ATLAS physicist Rik Yoshida of Argonne National Laboratory near Chicago. “I think everybody’s very surprised and pleased at the pace of progress.”

Higgs-hunting scientists on experiments at U.S. particle accelerator the Tevatron will also present results in March.

Discovering the type of Higgs boson predicted in the Standard Model would confirm a theory first put forward in the 1960s.

Even if the experiments find a particle where they expect to find the Higgs, it will take more analysis and more data to prove it is a Standard Model Higgs. If scientists found subtle departures from the Standard Model in the particle’s behavior, this would point to the presence of new physics, linked to theories that go beyond the Standard Model. Observing a non-Standard Model Higgs, currently beyond the reach of the LHC experiments with the data they’ve recorded so far, would immediately open the door to new physics.

Another possibility, discovering the absence of a Standard Model Higgs, would point to new physics at the LHC’s full design energy, set to be achieved after 2014. Whether ATLAS and CMS show over the coming months that the Standard Model Higgs boson exists or not, the LHC program is closing in on new discoveries.

News of Higgs Boson Soon?

Could a Higgs boson announcement be imminent from the LHC?

05 December 11

Physicists at the Large Hadron Collider could be getting an early Christmas present: the Higgs boson. According to the latest rumours, scientists at the LHC are seeing a signal that could correspond to a Higgs particle with a mass of 125 GeV (a proton is slightly less than 1 GeV).

Public talks are scheduled to discuss the latest results from Atlas and CMS, two of the main LHC experiments, on 13 December. This follows one day after a closed-door Cern council meeting where officials will get a short preview of the findings, whatever they may be.

“Chances are high (but not strictly 100%) that the talks will either announce a (de facto or de iure) discovery or some far-reaching exclusion that will be really qualitative and unexpected,” wrote theoretical physicist Lubos Motl on his blog.

Motl also mentioned that an internal email sent to the Cern community suggests that results on the elusive Higgs — which is required under the Standard Model of particle physics to provide mass to different particles — will be inconclusive. This could mean that the finding is below the five-sigma threshold needed to definitively declare a discovery in physics.

But if the rumours are true, and the Higgs has been seen at 125 GeV, it could bolster the idea that there is physics beyond the Standard Model that describes the behaviour of subatomic particles. A 125 GeV Higgs is lighter than predicted under the simplest models and would likely require more complex theories, such as supersymmetry, which posits the existence of a heavier partner to all known particle

from:   http://www.wired.co.uk/news/archive/2011-12/05/higgs-boson-imminent