Joseph P Farrell on Mind, Heart, & Memory



You may recall that yesterday I blogged about an allegedly successful experiment in the “freezing”, or at least, “extreme cooling” of a human being, and his or her successful “reanimation.” The key to the allegedly successful experiment was, you might also recall, the removal of the patient’s blood and its replacement by an “ice-cold saline solution.” And I speculated that the whole procedure, since it was performed with the consent of the government, might have had as a hidden goal to discover what happened to that individual’s consciousness while undergoing the “procedure.”  We may now also wonder if, indeed, the removal of the individual’s blood was part of my hypothesized “consciousness experiment”; was the individual’s own blood even restored to him or her? Or was it someone else’s?

We don’t know, because there was scanty information provided about the whole alleged success; we were told only that its performer, Dr. Samuel Tisherman, promises to deliver a paper on the whole thing in 2020.

But in that respect, there’s another odd story that was spotted by M.C., who is due a big thank you for sending it along:

Second Brain Found in Heart Neurons – Trust Your Gut Feelings

Now, this is not exactly new; I have in fact blogged about the unusual nature of this “heart-brain” idea before; neurons are not confined merely to the brain, but appear in the heart as well. There was, however, something that caught my eye in this article, and I rather suspect it’s what caught M.C.’s eye as well and compelled M.C. to send the article along; you’ll note that the article enumerates various cases of individuals who have received heart transplants, and whose behavior suddenly changes to embrace habits and behaviors associated with the donor of the heart. While the article does not mention them, similar experiences have been recorded for other types of organ transplants. One wonders if a similar phenomenon can be associated with blood transplants.

But in any case, what caught my attention in this article was this statement:

Neurologist Dr. Andrew Armour from Montreal in Canada discovered a sophisticated collection of neurons in the heart organised into a small but complex nervous system. The heart’s nervous system contains around 40,000 neurons called sensory neurites that communicate with the brain. Dr. Armour called it “the Little Brain in the Heart”. It has been known for many years that memory is a distributive process. You can’t localize memory to a neuron or a group of neurons in the brain. The memory itself is distributed throughout the neural system. So why do we draw a line at the brain? (Emphasis added)

This idea of distributed memory sounds a bit like a hologram, and the article quickly proceeds to try to avoid the unpleasant aspects of that by quickly trying to tie it all to good-old-fashioned-and-purely-materialistic speculations:

Other medical experts offer different explanations, but all agree that it is not so much mystical as it is science, and a science that needs further exploration.Professor Pr Paul Pearsall and Pr Gary Schwarz got together.

Professor Gary Schwartz says that “Feedback mechanisms are involved in learning. When we talk, for example, about how the brain learns, we talk about what we call neural networks in the brain. It turns out that the way a neural network works is that the output of the neurons feeds back into the input of the neurons. And this process goes over and over again. So long as the feedback is present the neurons will learn. If you cut the feedback, there is no learning in the neurons.”

The Mind is Not Just in the Brain

Dr. Candace Pert, a pharmacologist at Georgetown University believes that the mind is not just in the brain, but also exists throughout the body. This school of thought could explain such strange transplant experiences. “The mind and body communicate with each other through chemicals known as peptides. These peptides are found in the brain as well as in the stomach, in muscles and in all of our major organs. I believe that memory can be accessed anywhere in the peptide/receptor network. For instance, a memory associated with food may be linked to the pancreas or liver and such associations can be transplanted from one person to another”.

Now I’m all for feedback loops as I’ve talked about them in all sorts of contexts. And for that matter, the idea of the heart being part of a kind of “distributed brain” also appeals to me; for one thing, octopuses appear to have this type of structure to their nine brains. But more importantly, I’ve always been an advocate of the more ancient idea that human reason is not mere ratiocination, but incorporates and includes what the ancients would have called the passions, a deeper word than “emotions.” So it appeals to me for this reason as well.

But it’s that “distributed memory” idea and its “holographic” overtones that really appeals, for lurking deeply within that idea is the idea that memory is not local, existing or concentrated in this or that area of the brain, or the body. It rather as if what is implied by that idea is the opposite: that the body exists within a memory, and is imprinted with it like a psychotronic object. If it’s distributed, and non-local, then perhaps it’s also an indicator that the body, in order to be a body, is integrated at the quantum level, by quantum tunneling, perhaps, and that memory may be a function of this somehow. Whatever one makes of my speculations here, I strongly suspect that this idea of distributed memory means that those old Cartesian dualisms and epiphenomena are, like all over-simplified dualisms, going to go the way of the dodo bird, and that the relationship between the tangible physical body and the immaterial intangible world of things like memory are going to turn out to be far more complex than we imagined, and that those “feedback loops” between the two are the key.

See you on the flip side…


What’s Inside Your Head?

The multi-dimensional universe hiding inside your head

A model from the Blue Brain Project describes the brain as being made up of ‘multi-dimensional’ geometrical structures and spaces

stockdevil / iStock

A fabric of complex structures in our brain could be the key to understanding how the organ works, according to a new study. It could even provide an answer to mysteries like where our memories are stored.

The human brain is one of the most complex structures in nature, and we are still a long way from fully understanding how it works. Now, a group of researchers from the Blue Brain Project is bringing us closer to this goal using complex computer models.

Its latest model describes the brain as being made up of ‘multi-dimensional’ geometrical structures and spaces.

“We found a world that we had never imagined,” said neuroscientist Henry Markram, director of Blue Brain Project and professor at the EPFL in Lausanne, Switzerland.

“There are tens of millions of these objects even in a small speck of the brain, up through seven dimensions. In some networks, we even found structures with up to eleven dimensions.”

The structures form when a group of neurons – cells that transmit signals in the brain – forms something called a clique. Each neuron connects to every other neuron in the group in a specific way, to form a new object.

The more neurons there are in a clique, the higher the ‘dimension’ of the object.

It is important to understand these structures do not exist in more than three dimensions in space. Only the mathematics used to describe them uses more than three dimensions.

“Outside of physics, high-dimensional spaces are frequently used to describe complex data structures or conditions of systems, for instance, the state of a dynamical system in state space,” professor Cees van Leeuwen, from KU Leuven, Belgium and reviewer of the paper, told WIRED.

“The space is simply the union of all the degrees of freedom the system has, and its state describes the values these degrees of freedom are actually assuming.”

“When you take a complex network like the brain, you try to associate some familiar objects with it so that you can try to understand what it does,” Ran Levi from Aberdeen University, who worked on the paper, told WIRED. “Without it, all you see is a mess of ‘trees’ i.e. neurons firing at what appears to be random patterns.

“What we did is we took the complex structure of the brain network and mapped it to this universe. thus picking up very precisely defined high dimensional objects that give us a key to understanding structure and function.”

The team used a mathematical branch called algebraic topology to model these structures within a virtual brain, generated using a computer. Experiments were then carried out on real brain tissue, to test the results.

When the researchers added a stimulus into the virtual brain tissue, cliques of progressively higher dimensions assembled. In between these cliques were holes, or cavities.

“The appearance of high-dimensional cavities when the brain is processing information means that the neurons in the network react to stimuli in an extremely organised manner,” said Levi.

“It is as if the brain reacts to a stimulus by building then razing a tower of multi-dimensional blocks, starting with rods (1D), then planks (2D), then cubes (3D), and then more complex geometries with 4D, 5D, etc. The progression of activity through the brain resembles a multi-dimensional sandcastle that materialises out of the sand and then disintegrates.”

The next step will be to see what practical role these structures play in the brain. For example, neuroscience has also been struggling to find where the brain stores its memories, and the holes could be a solution.

“They may be ‘hiding’ in high-dimensional cavities,” Markram speculates.

The research is published in Frontiers in Computational Neuroscience.