New CME On Its Way

CME, POSSIBLY INCOMING: A coronal mass ejection (CME) might be heading for Earth. The cloud blasted away from the sun during the late hours of Jan 4th following a long-duration M4-class solar flare from big sunspot AR1944. SOHO (the Solar and Heliospheric Observatory) recorded the explosion:

The assymetric CME could deliver a glancing blow to Earth’s magnetic field on January 7th, possibly sparking G1-class geomagnetic storms. NOAA analysts are still processing the CME imagery for a more precise forecast.

Watch the movie again. There might be two CMEs in there. After the first cloud from sunspot AR1944 emerged, a second cloud was propelled off the sun’s western limb by departing sunspot AR1936. The mixture of CMEs complicates analysis of this event.

fr/spaceweather.com

New X-Class Solar Flare

X-CLASS SOLAR FLARE: Sprawling suunspot AR1897 erupted on Nov. 19th (10:26 UT), producing an X1-class solar flare. NASA’s Solar Dynamics Observatory recorded the explosion’s extreme ultraviolet flash:

Although the sunspot is not directly facing Earth, the flare did affect our planet. Mainly, the UV flash produced a wave of ionization in the upper atmosphere over Europe, Africa and parts of Asia. A brief blackout of HF radio transmissions around the poles might have also occurred. First-look coronagraph data from NASA’s STEREO-Ahead probe show a CME emerging from the blast site, but it is probably not heading for Earth.

fr/spaceweather.com

11/5 Solar Flar & ‘Magnetic Crochet’

SOLAR FLARE CAUSES RARE ‘MAGNETIC CROCHET’: On Nov. 5th at 22:12 UT, the magnetic canopy of sunspot AR1890 erupted, producing a brief but intense X3-class solar flare. NASA’s Solar Dynamics Observatory recorded the extreme ultraviolet flash:

Radiation from the flare caused a surge in the ionization of Earth’s upper atmosphere–and this led to a rare magnetic crochet. Alexander Avtanski observed the effect using a homemade magnetometer in San Jose, California. A magnetic crochet is a disturbance in Earth’s magnetic field caused by electrical currents flowing in air 60 km to 100 km above our heads. Unlike geomagnetic disturbances that arrive with CMEs days after a flare, a magnetic crochet occurs while the flare is in progress. They tend to occur during fast impulsive flares like this one.

More eruptions are in the offing. NOAA forecasters estimate a 45% chance of M-class solar flares and a 10% chance of X-flares on Nov. 7th.

from:    spaceweather.com

Interesting Stuff re:10/25 Solar Flare

X2-FLARE BLASTS EARTH’S IONOSPHERE: Electromagnetic radiation from the X2-class solar flare of Oct. 25th had a significant effect on Earth’s upper atmosphere. As a wave of ionization swept across the dayside of the planet, the normal propagation of shortwave radio signals was scrambled. In Alachua, Florida, electrical engineer Wes Greenman recorded the effects using his own shortwave radio telescope. Click on the frequency-time plot to view an animation:

During the time that terrestrial shortwave transmissions were blacked out, the sun filled in the gap with a loud radio burst of its own. In New Mexico, amateur radio astronomer Thomas Ashcraft recorded the sounds. “This radio burst was a strong one and might be too intense for headphones,” cautions Ashcraft.

Solar radio bursts are caused by strong shock waves moving through the sun’s atmosphere. (Electrons accelerated by the shock front excite plasma instabilities which, in turn, produce shortwave static.) They are usually a sign that a CME is emerging from the blast site–and indeed this flare produced a very bright CME.

fr/spaceweather.com

Big Solar Flare

INTERCONNECTED SOLAR ACTIVITY: The X1-flare of Oct. 25th was remarkable not only for its strength, but also for its interconnectedness. The flare was bracketed by two erupting magnetic filaments, each located hundreds of thousands of kilometers from the instigating sunspot AR1882. The whole episoide, shown in this SDO movie, was reminiscent of the famous global eruption of August 2010.

Today, Oct. 26th, it happened again. Click on this image of the sun’s southwestern quadrant and watch a sequence of flare activity around sunspots AR1875 and AR1877 followed by a filament eruption off the SW limb:

Instead of being a sequence of unrelated events, these flares and eruptions are likely connected by magnetic fields, which thread through the whole broad region. Like dominoes falling, one explosion triggers another as shock waves follow magnetic fields from blast site to blast site.

The filament punctuated the sequence by hurling a part of itself into space. SOHO has observed a CME emerging from the blast site, but it is too soon to say whether it is heading for Earth.

fr/spaceweather.com

More SOlar Flares

SOLAR FLARE! Solar activity is high. On October 24th at 00:30 UT, Earth-facing sunspot AR1877 erupted, producing a powerful M9-class solar flare. NASA’s Solar Dynamics Observatory recorded the blast:

Update #1: The eruption hurled a faint CME into space and it appears to be heading toward Earth. The arrival time is not yet known.

Update #2: NASA’s Solar Dynamics Observatory has released a full-disk movie of the explosion. Play it.

More flares are in the offing. Two large sunspots, AR1875 and AR1877, have ‘beta-gamma-delta’ magnetic fields that harbor energy for strong eruptions. NOAA forecasters estimate a 40% chance of M-flares and a 5% chance of X-flares during the next 24 hours.

fr/spaceweather.com

New Sunspot Activity

SUNSPOTS OF INTEREST: Two large sunspot groups, AR1875 and AR1877,have emerged over the sun’s eastern limb and they are turning toward Earth. NASA’s Solar Dynamics Observatory captured this three-day movie of their approach:

AR1877 is large, and AR1875 is rapidly growing to match it. Both sunspot groups have ‘beta-gamma’ magnetic fields that harbor energy for M-class solar flares. So far, however, neither one is actively flaring. Perhaps this is the calm before the storm. NOAA forecasters estimate a 25% chance of M-flares in the next 24 hours.

fr/spaceweather.com

A Waking Sun

FARSIDE ERUPTION: An active region located just behind the sun’s northeastern limb erupted this morning, producing an X-ray flash that registered M1.5 on the Richter Scale of Solar Flares — despite the fact that it was partially eclipsed by the edge of the sun. The true intensity of the flare was much greater, possibly X-class. The explosion also hurled a spectacular CME into space:

Type II radio emissions from the expanding cloud suggest an expansion velocity of at least 510 km/s (1.1 million mph). That’s a typical speed for CMEs.

Within a few days, the sunspot responsible for this outburst will rotate around to the Earthside of the sun. At that time, Earth-directed solar activity could increase. August and September were quiet months, but in October the sun seems to be waking up

fr/spaceweather.com

New Coronal Hole

CORONAL HOLE: NASA’s Solar Dynamics Observatory is monitoring a coronal hole in the sun’s northern hemisphere. It is the UV-dark region in this image taken during the early hours of Sept. 21st:

The white lines in the image trace the sun’s magnetic field. A coronal hole is a place where the magnetic field spreads apart, allowing solar wind to escape. A stream of solar wind flowing from this particular coronal hole is heading for Earth, due to arrive on Sept. 23-24. Its arrival could add to the impact of a minor CME expected to reach Earth at about the same time. Polar geomagnetic storms are possible early next week.

fr/spaceweather.com