Gamma Rays, Matter, & Magnetic Fields

Anti-matter mystery solved? Scientists say spiral magnetic fields to thank for our existence

Published time: May 15, 2015 16:03
An artist's depiction of the Fermi Gamma-ray Space Telescope (FGST) in orbit.
(Photo by NASA)

An artist’s depiction of the Fermi Gamma-ray Space Telescope (FGST) in orbit. (Photo by NASA)

Why does matter exist in the universe? It’s not a simple question, but NASA’s Fermi space telescope may be on its way to an answer. The instrument has detected gamma rays which could provide scientists with clues surrounding the mystery of matter.

Researchers believe the telescope’s detection of the gamma rays (high-energy light) has provided the answer as to why the universe is filled with matter, instead of anti-matter.

The matter mystery has stumped scientists who believe, based on existing theories, that the Big Bang should have produced equal amounts of matter and anti-matter, which would have immediately destroyed each other, leaving nothing behind.

But, for some unexplained reason, that didn’t happen at all. Matter won the battle, and human beings exist because of it.

Tanmay Vachaspati, a professor of physics at Arizona State University, and his colleagues think they have found a clue to that mystery, believing a signal in the Fermi gamma ray data suggests an overwhelming production of matter – but not anti-matter – in the early universe.

The team claims to have identified a “twisting” of the gamma rays detected by the telescope. They believe the twisted rays are evidence of a magnetic field that has existed in the universe since less than a second after the Big Bang occurred.

The gamma rays, sensitive to the effect of a magnetic field, carried a spiral pattern imprint from the field. Analysis of the imprint and its properties showed the field is predominately left-handed.

The left-hand orientation is evidence of the overwhelming production of matter. Vachaspati and his team say that anti-matter would have produced a right-hand orientation.

The team’s findings were published in the journal Monthly Notices of the Royal Astronomical Society on Friday.

The discovery of the left-hand signal was actually reported by Vachaspati and his colleagues in a paper published in 2014, but the physics professor still had questions, and therefore didn’t “make a big deal of it.”

“We were kind of cautious, and we didn’t want to make a big deal of it, because we thought maybe the signal would go away with more data or more analysis,” Vachaspati said. “And then, in [the new paper], we used more data and did other kinds of analysis. And the signal is still there.”

The researchers did, however, point out that there is a 0.3 percent chance that the results aren’t what they seem.

Vachaspati said that the next step is to continue to look for the signal in more Fermi telescope data.

“I think the most important part is that we’re seeing a suspicious signal in the data, and then the rest is kind of one step at a time,” he said.

Launched in 2008, the Fermi Gamma-ray Space Telescope observes gamma rays from very distant sources, such as the universe’s supermassive black holes.

from:    http://rt.com/news/259005-nasa-fermi-telescope-matter/

Antimatter Atom Measured

Revealing Our Antimatter Universe–1st Measurement Ever of an Antimatter Atom

 

Free_1795167

We may soon know why the universe seems to have a preference for matter over antimatter.An international team of physicists working on the ALPHA experiment at CERN near Geneva, Switzerland, has successfully used microwaves to manipulate antihydrogen atoms. Their work could help answer fundamental questions about the universe. The accomplishment, by physicists working on the ALPHA experiment at CERN near Geneva, Switzerland, is a first step towards more detailed measurements that will reveal whether matter and antimatter are true mirror images.

“This comparison is motivated in part by a question that has baffled scientists for a long time,” says Simon Fraser University physics professor Mike Hayden, lead author of the research paper published in Nature March 7. “The known laws of physics tell us that matter and antimatter should naturally exist in equal amounts. The problem is that we seem to live in a universe that is almost entirely devoid of antimatter. A possible explanation is that there might be some subtle difference between matter and antimatter, which let matter win out over time as the universe evolved. If a difference between hydrogen and anti-hydrogen is discovered, it could provide a valuable clue for solving this mystery.”

The ALPHA team trapped an atom of antihydrogen –made up of a positron – the antimatter equivalent of an electron and an antiproton– using magnetic fields. By shining microwave radiation tuned to a specific frequency on the captive atom, the team was able to flip the anti-atom’s magnetic moment, liberating it from the trap and allowing it to be detected, enabling the first spectroscopic measurement of antihydrogen.

“.

The current standard model of particle physics predicts that antimatter atoms should behave exactly the same as atoms of normal matter, and have identical properties, apart from their opposite charge, which can be verified by comparing the frequency of light emitted from excited atoms. Any difference in these spectroscopic measurements would suggest that antimatter is not an exact opposite of matter – and the assumptions the standard model is based on would be considerably weakened.

The present measurement, which was conducted by the ALPHA collaboration at CERN in Switzerland, involved irradiating magnetically-trapped anti-atoms with microwaves. Precise tuning of the microwave frequency and magnetic field enabled researchers to hit an internal resonance, kicking atoms out of the trap and revealing information about their properties.

“We have just witnessed the first-ever interactions between microwaves and trapped antimatter atoms,” says Hayden. The Daily Galaxy via Simon Fraser University. Eventually measurements may reveal clues that may help solve one of the deepest mysteries in particle physics.

The Daily Galaxy via Simon Fraser University and newscientist.com

from site:    http://www.dailygalaxy.com/my_weblog/2012/03/revealing-the-antimatter-universe-1st-measurement-ever-of-an-antimatter-atom.html#more